MetaNetX/MNXref rel. 4.3
A few diagrams to document the RDF schema
Notation

- IRI and blank nodes are systematically typed in the MetaNetX RDF schema. In the following diagrams this is represented as:

 ![Diagram](image)

 which means

 $$\text{?comp} \text{ rdf:type mnx:COMP}$$

- GSMN stands for Genome-Scale Metabolic Network (GEM is another frequently used acronym for the same beast).
Main node types

<table>
<thead>
<tr>
<th>mnx:CHEM</th>
<th>A metabolite</th>
</tr>
</thead>
<tbody>
<tr>
<td>mnx:COMP</td>
<td>A sub-cellular compartment</td>
</tr>
<tr>
<td>mnx:PART</td>
<td>A "part" in a chemical equation, made of a stoichiometric coefficient and a metabolite in a sub-cellular compartment</td>
</tr>
<tr>
<td>mnx:REAC</td>
<td>A chemical equation made of the above parts, assigned to its left or right side</td>
</tr>
<tr>
<td>mnx:PEPT</td>
<td>A gene or gene product, i.e. a polypeptide. Most published GSMNs are using gene identifiers from an organism-specific nomenclature. The corresponding UniProt identifiers are recovered when possible</td>
</tr>
<tr>
<td>mnx:CPLX</td>
<td>A protein complex or multiprotein complex is a group of one, two or more associated polypeptide chains. In Systems Biology, the word protein is usually used to designate the quaternary structure of enzymes and transporters, not their primary structure, i.e. the polypeptidic chains.</td>
</tr>
<tr>
<td>mnx:CATA</td>
<td>A catalyst contains the list of the involved protein complexes together with constraints on the flux carried by the implied reaction.</td>
</tr>
<tr>
<td>mnx:GPR</td>
<td>Gene-Protein-Reaction: A particular reaction with zero, one, or several catalysts, in the context of a particular GSMN</td>
</tr>
<tr>
<td>mnx:MNET</td>
<td>A Genome-Scale Metabolic Network (GSMN) or a metabolic network or a biochemical pathway, which are essentially sets of GPRs</td>
</tr>
</tbody>
</table>
This schema was designed to capture most information that can be obtained from SBML representation of GSMN.
mnx:COMP - sub-cellular compartment
Example of a compartment instance: Cytoplasm

```turtle
@PREFIX mnx: <https://rdf.metanetx.org/schema/>
@PREFIX comp: <https://rdf.metanetx.org/comp/>
@PREFIX go: <http://purl.obolibrary.org/obo/GO_>
@PREFIX biggC: <https://identifiers.org/bigg.compartment/>
comp:MNXC3 a mnx:COMP;
  rdfs:label 'MNXC1';
  rdfs:comment 'cytoplasm';
  mnx:compSource go:0005737;
  mnx:compXref go:0005737, biggC:c, seed:c.
```

The diagram illustrates the RDF representation of the Cytoplasm compartment, with properties such as the label "MNXC1" and the comment "cytoplasm".
mnx:PEPT - gene or gene product (e.g. polypeptide)

- Most published GSMNs are using gene identifiers from an organism-specific nomenclature
- The corresponding UniProt identifiers are recovered at MetaNetX, when possible
mnx:CHEM - metabolite

Nota Bene: mnx:chemRefer or at least one mnx:chemReplacedBy always exists
MetaNetX repository of GSMNs and biochemical networks: Reaction with specific compartments (MNXC1, MNXC2 ...). These identifiers may change in the near future!

MetaNetX/MNXref: Reactions with generic compartments (MNXD1, MNXD2 ...). Stable identifiers
GPR stands for Gene-Protein-Reaction
Large GSMNs contain thousands of GPR
mnx:GPR – GPR are the building block of GSMN

GSMNs
specific compartments
MNXC1, MNXC2...

MetaNetX/MNXref
generic compartments
MNXD1, MNXD2...

Reaction name(s) in the original model

xsd:string

rdfs:label 1..1

rdfs:comment 1..1

Summary of catalysis info in the original model

xsd:string

mnx:GPR

mnx:REAC

mnx:REAC

mnx:mnxr 0..1

?MNXR

mnx:REAC

mnx:CATA

mnx:GPR

mnx:REAC

?rea

mnx:reac 1..1

mnx:cata 1..n
Subunits are all required to produce a functional protein complex
Public cross-references are documented